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The Space–Time Conservation Element and Solution Element (CESE) method is used to simulate the prop-
agation of Dual-Phase-Lag (DPL) laser-pulsed thermal waves through single-layer and multi-layer 2D
structures. Numerical solutions are presented for the temperature distributions induced within a
single-layer structure by four non-Fourier propagation modes, namely hyperbolic, wavelike, diffusive
and over-diffusive. In addition, the transmission–reflection phenomena induced as the thermal wave
propagates through the interface between two layers with dissimilar properties are systematically exam-
ined and discussed.
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1. Introduction

In ultra-fast heat conduction systems, the orders of magnitude
of the time and space dimensions are extremely short, and thus
the traditional Fourier conduction law with its implicit assumption
of instantaneous thermal propagation is no longer applicable. As a
result, a special treatment is required to model the thermal trans-
port phenomena which take place in nano- and micro-scale
systems.

Cattaneo [1] and Vernotte [2] proposed a thermal wave model
with a single-phase time lag in which the temperature gradient
established after a certain elapsed time was given by

~qþ sq
o~q
ot
¼ �krT; ð1Þ

where sq denotes the relaxation time required for the thermal phys-
ics to take account of the hyperbolic effect within the medium.
From Eq. (1), it can be seen that when sq > 0, the thermal wave
propagates through the medium with a finite speed of C ¼

ffiffiffiffiffiffiffiffiffiffi
a=sq

p
,

where a is the thermal diffusivity. However, when sq approaches
zero, the thermal wave has an infinite speed and thus the Single-
Phase-Lag (SPL) model reduces to the traditional Fourier model.
The literature contains many investigations into SPL thermal waves.
For example, Özisik and Vick [3] presented analytical solutions for
the hyperbolic heat conduction equation describing the wavelike
nature of thermal energy transport in a finite slab containing a
ll rights reserved.
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volumetric energy source and having insulated boundaries.
Gembarovič and Majerni [4] calculated the temperature distribu-
tion resulting from the absorption of an instantaneous pulse of heat
flux in a finite medium. Numerical methods using the explicit
MacCormack’s predictor–corrector or Lax–Wendroff methods have
been employed in [5,6] to simulate one-temperature hyperbolic
heat conduction problems. In more recent studies, Torii and Yang
[7] and Lewandowska and Malinowski [8] used a numerical scheme
and an analytical approach, respectively, to investigate the propaga-
tion of thermal waves in thin films subjected to a symmetrical heat-
ing effect on either side. Gembarovic [9] solved the hyperbolic type
heat conduction equation using an explicit iterative finite difference
algorithm. However, a significant deviation was observed between
the numerical solutions for the thermal wave shape and the exact
solutions.

In micro-scale conduction systems, thermal transport takes
place through phonons, free electrons and photons. As a result,
when the size of the physical system reduces to the characteristic
size of these media, it is necessary to take account of certain
phenomena which are neglected at the micro-scale, including the
phonon–electron interactions, phonon scattering, and so forth. To
reflect the effects of these phenomena, Tzou [10] proposed the
following Dual-Phase-Lag (DPL) model:

~qþ sq
o~q
ot
¼ �k rT þ sT

o

ot
rT

� �
; ð2Þ

where sT and sq denote the finite times required for thermal equi-
librium to be obtained and for effective collisions to take place
between the electrons and the phonons, respectively. Tang and
Araki [11] derived an analytical solution for the DPL model using
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Nomenclature

B lag time ratio (sT/2sq)
C speed of thermal wave
Cp specific heat
G amplification matrix
I laser intensity
k thermal conductivity
L length of model
t time
T temperature
T0 reference temperature
q heat flux
Q dimensionless heat flux
R ratio of parameters
W width of the model
V volume of Euclidean space E3

Greek symbols
a thermal conductivity
b dimensionless time

c ratio of (Dn/Dg)
g dimensionless space variable in y direction
q density
s thermal relaxation time
h dimensionless temperature
n dimensionless space variable in x direction

Superscripts
* expression of variables in SE
n time level

Subscripts
0 reference parameter
1 layer 1
2 layer 2
‘ number of material
m matrix element
l end location of film

Fig. 1. Simulation models and coordinate system.
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Green’s function and a finite integral transformation technique. Fan
and Lu [12] solved the same problem using a hybrid numerical
method combining the Laplace transformation technique and the
dual reciprocity boundary element method. However, significant
errors were observed between the numerical results and the analyt-
ical solutions. Chou and Yang [13] applied the 1D Space–Time Con-
servation Element and Solution Element (CESE) method to study
both SPL model and DPL model thermal wave behavior and per-
formed a numerical stability analysis. Excellent numerical solutions
were obtained by the CESE method. Han et al. [14] used a finite dif-
ference method to investigate the 2D DPL heat conduction charac-
teristics induced in the short-pulse-laser heating of a surface and
presented discussions of the lagging thermal behavior.

In the present study, the 2D DPL heat conduction problem is
solved using the CESE method. The CESE method was originally
developed by Chang [15] in 1995 as a means of solving the
Navier–Stokes and Euler equations, and has been successfully
applied to the solution of many computational fluid dynamics
and aero-acoustic problems [16]. Zhang et al. [17] demonstrated
the application of the CESE method to the numerical solution of
2D and 3D unsteady Euler equations using quadrilateral and hexa-
hedral meshes. Furthermore, Shamsul et al. [18] successfully
extended the 2D CESE method to solve the shallow water equa-
tions including source terms. The basic principle of the CESE meth-
od is to ensure local and global flux conservation in the space and
time domains. In the CESE method, the independent flow variables
and their derivatives are treated as unknowns and are solved
simultaneously. Importantly, there is no need to adjust the artifi-
cial dissipation effect to match the local solution properties, and
hence an uniform solution accuracy is assured. This feature renders
the CESE method an ideal solver for wave problems characterized
by discontinuous phenomena or sharp gradients, such as combus-
tion systems, shock waves, ZND waves, and so on. Hence, the CESE
method provides a suitable approach for simulating the DPL ther-
mal wave problem, especially the sharp characteristics of SPL
(when sT is equal to zero, the DPL model reduces to the conven-
tional SPL model).

Previous studies using the DPL diffusion model have reported
many interesting phenomena regarding the energy transport at
the interface between dissimilar materials [19–22]. However, the
DPL model introduces additional mixed spatial- and time-deriva-
tive terms in both the governing equation and the boundary condi-
tions imposed at the interface makes mathematical difficult. In the
current study, a series of simulations are performed using the CESE
scheme and the DPL model to investigate the temperature and heat
flux distributions induced by a laser-pulsed thermal wave within a
finite 2D structure comprising either one or two slab-like elements.
The simulations consider four thermal lagging heat conduction
modes, namely hyperbolic, wavelike, diffusive and over-diffusive.
The simulations also examine the 2D transmission–reflection
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phenomenon induced as the thermal energy pulse propagates
through the interface between two dissimilar slabs in a two-lay-
ered structure.

2. Mathematical models

The current simulations investigate the 2D DPL thermal re-
sponse of a flat slab subjected to a laser-induced thermal pulse.
As shown in Fig. 1(a) and (b), respectively, the simulations consider
both a single-layer structure and a two-layer structure comprising
slabs of different materials. For simplicity, it is assumed that each
medium in the simulation model has a uniform initial temperature,
constant thermal properties, and insulated surfaces. Furthermore,
in the two-layer model, a perfect connection is assumed between
the two slabs (i.e., the thermal resistance of connection on inter-
face is neglected).

The single-layer model is simply a particular case of the two-
layer model. Hence, having derived the governing equation for
the two-layer model, the corresponding equation for the single-
layer model is easily obtained by specifying appropriate parameter
values. For the two-layer structure, the DPL model in the x- and
y-directions and the energy equation are given, respectively, by

For the 1st material:

qx1ðx; y; tÞ þ sq1
oqx1ðx; y; tÞ

ot
¼ �k1

oT1ðx; y; tÞ
ox

�

þ sT1
o

ot
oT1ðx; y; tÞ

ox

� ��
; ð3Þ

qy1ðx; y; tÞ þ sq1
oqy1ðx; y; tÞ

ot
¼ �k1

oT1ðx; y; tÞ
oy

�

þsT1
o

ot
oT1ðx; y; tÞ

oy

� ��
; ð4Þ

� oqx1ðx; y; tÞ
ox

þ
oqy1ðx; y; tÞ

oy

� �
¼ q1Cp1

oT1ðx; y; tÞ
ot

: ð5Þ

For the 2nd material:

qx2ðx; y; tÞ þ sq2
oqx2ðx; y; tÞ

ot
¼ �k2

oT2ðx; y; tÞ
ox

�

þ sT2
o

ot
oT2ðx; y; tÞ

ox

� ��
; ð6Þ

qy2ðx; y; tÞ þ sq2
oqy2ðx; y; tÞ

ot
¼ �k2

oT2ðx; y; tÞ
oy

�

þ sT2
o

ot
oT2ðx; y; tÞ

oy

� ��
; ð7Þ

� oqx2ðx; y; tÞ
ox

þ
oqy2ðx; y; tÞ

oy

� �
¼ q2Cp2

oT2ðx; y; tÞ
ot

: ð8Þ

Collectively, these coupled equations describe the temperature and
heat flux distributions in the x- and y-directions. Note that in these
equations, sq and sT denote the phase-lag time of the heat flux vec-
tor and the temperature gradient, respectively; k is the thermal con-
ductivity of the propagation medium; and Cp is the volumetric heat
capacity of the medium.

In the simulations, an assumption is made that the central
region of the front surface of the first slab in the two-layer model
is irradiated by a laser pulse with a Gaussian distribution in both
the temporal and spatial domains, i.e.,

Iðx; tÞ ¼ I0ffiffiffiffi
p
p

tp
exp � t

tp

� �2

� x
kp

� �2
" #

; ð9Þ

where tp is the characteristic time in the temporal domain, kp is the
characteristic length in the spatial domain, and I is the output inten-
sity of the laser.
The present study applies the above physical model to investi-
gate how the thermo-physical property ratios affect the thermo-
behavior. For analytical convenience, the following dimensionless
variables are introduced for the temperature, heat flux, time and
space:

B ¼ sT1
2sq1

; n ¼ x
2
ffiffiffiffiffiffiffiffiffi
a1sq1
p ; g ¼ y

2
ffiffiffiffiffiffiffiffiffi
a1sq1
p ; b ¼ t

2sq1
;

np ¼ kp

2
ffiffiffiffiffiffiffiffiffi
a1sq1
p ; bp ¼

tp
2sq1

; nL ¼ L
2
ffiffiffiffiffiffiffiffiffi
a1sq1
p ; gW ¼ W

2
ffiffiffiffiffiffiffiffiffi
a1sq1
p ;

h ¼ k1
ffiffiffiffiffi
sq1
p ffiffiffi

p
p
ðT�T0Þ

I0
ffiffiffiffi
a1
p ; Q n ¼

ffiffiffi
p
p

sq1qx1
I0

; Qg ¼
ffiffiffi
p
p

sq1qy1
I0

; Q I ¼
ffiffiffi
p
p

sq1I
I0

;

Rq ¼ sq2
sq1
; Rk ¼ k2

k1
; RT ¼ sT2

sT1
; Ra ¼ a2

a1
;

ð10Þ

where a = k/qC is the thermal diffusivity of the propagation med-
ium and B is a dimensionless parameter which characterizes the
lagging response and is defined as the ratio between the two phase
lags of the 1st material (i.e., B = sT/2sq). The properties of the two
materials in the two-layer structure, i.e., the lag duration of heat
flux, the thermal conductivity, the lag duration of temperature gra-
dient and the thermal diffusivity, can be conveniently defined
through an appropriate control of the ratios Rq, Rk, RT and Ra.

Utilizing these dimensionless variables, the following dimen-
sionless equations can be obtained for the heat flux and tempera-
ture distributions in the two slabs within the two-layer structure:

In the 1st slab:

oQn1

ob
þ o

on
h1 þ B

oh1

ob

� �
¼ �2Q n1; ð11Þ

oQg1

ob
þ o

og
h1 þ B

oh1

ob

� �
¼ �2Qg1; ð12Þ

oh1

ob
þ oQ n1

on
þ

oQg1

og
¼ 0: ð13Þ

In the 2nd slab:

Rq
oQ n2

ob
þ Rk

o

on
h2 þ BRT

oh2

ob

� �
¼ �2Q n2; ð14Þ

Rq
oQg2

ob
þ Rk

o

og
h2 þ BRT

oh2

ob

� �
¼ �2Qg2; ð15Þ

Rk

Ra

oh2

ob
þ oQ n2

on
þ

oQg2

og
¼ 0: ð16Þ

Meanwhile, the dimensionless laser irradiation is given by

Q Iðn; bÞ ¼
1

2bp
exp � b

bp

 !2

� n
np

� �2
2
4

3
5: ð17Þ

Eqs. (11)–(17) represent the governing equations of the two-layer
heating model (see Fig. 1(b)). Note that when the properties of
2nd slab are equal to 1st slab, the governing equations will be re-
duced to single-layer model. Hence, the governing equations for
the single-layer model (see Fig. 1(a)) are derived simply by setting
the dimensionless ratios Rq, Rk, RT and Ra equal to 1.
3. Description of CESE scheme

Traditional numerical methods such as finite difference or finite
element schemes generally solve the hyperbolic non-Fourier con-
duction equation for temperature and heat flux separately. How-
ever, in this study, the DPL model and associated energy
equation are solved at the same time using the CESE scheme. In
the current problem, the temperature and the heat flux are both
unknowns. Hence, the CESE method is used to derive the solutions
of both the temperature and the heat flux simultaneously at each
time step.



Fig. 2. Schematic illustration of space–time mesh and elements in CESE scheme.

Table 1
Nodes constituting the four BCEs in CE (Q0)

Four BCEs of CE(Q0)

BCE 1 B4-A1-B1-Q- B40-A10-B10-Q0

BCE 2 B1-A2-B2-Q- B10-A20-B20-Q0

BCE 3 B2-A3-B3-Q- B20-A30-B30-Q0

BCE 4 B3-A4-B4-Q- B30-A40-B40-Q0

Table 2
Nodes constituting the five faces of SE (Q0)

Five faces of SE(Q0)

Face 1 A10-B10-A20-B20-A30 -B30-A40-B40

Face 2 B1-B100-Q00-Q
Face 3 B2-B200-Q00-Q
Face 4 B3-B300-Q00-Q
Face 5 B4-B400-Q00-Q
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The analysis commences by formulating the CESE algorithm for
the DPL thermal wave model and the associated energy equation.
For simplicity, Eqs. (11)–(16) can be expressed in the following
matrix form:
oUm;‘

ob
þ oFm;‘

on
þ oGm;‘

og
¼ Sm;‘; m ¼ 1;2;3 and ‘ ¼ 1;2: ð18Þ

where the ‘‘m” indicates the number of variables and ‘‘‘” denotes
the number of different materials in the heat model (i.e., one or



Fig. 3. Transient temperature distribution associated with hyperbolic wave behavior at B = 0.0.

Fig. 4. Transient temperature distribution associated with wavelike behavior at B = 0.1.
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Fig. 5. Transient temperature distribution associated with diffusive behavior at B = 0.5.

Fig. 6. Transient temperature distribution associated with over-diffusive behavior at B = 1.0.
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two in the current case). The various components of this matrix are
defined as follows:

Um;1¼
Q n1

Qg1

h1

2
64

3
75; Fm;1¼

h1þBhb1

0
Q n1

2
64

3
75; Gm;1¼

0
h1þBhb1

Qg1

2
64

3
75;

Sm;1¼
�2Q n1

�2Qg1

0

2
64

3
75;

Um;2¼
Q n2

Qg2

h2

2
64

3
75; Fm;2¼

Rk
Rq
ðh2þBRThb2Þ

0
ðRaQ n2Þ=Rk

2
64

3
75; Gm;2¼

0
Rk
Rq
ðh2þBRThb2Þ
ðRaQg2Þ=Rk

2
64

3
75;

Sm;2¼
�2Q n2=Rq

�2Qg2=Rq

0

2
64

3
75:

Let x1 = n, x2 = g and x3 = b be the coordinates of a 3D Euclidean
space, E3. Applying the Gaussian divergence theorem within E3,
the differential form of Eq. (18) can be transformed into the follow-
ing integral conservation form:I

SðVÞ

~hm � d~s ¼
Z

V
ðFmÞdV ; m ¼ 1;2;3; ð19Þ

where ~hm ¼ ðFm;Gm;UmÞ, and S(V) is the boundary of an arbitrary
space–time region V within E3. Essentially, the right hand side of
Eq. (19) is a volume integration representing the internal heat gen-
erated over region V.

As shown in Fig. 2(a), the Euclidean space, E3, is divided into an
array of non-overlapping octagonal cylindrical regions referred to
as conservation elements (CEs). Fig. 2(b) shows the combined CE
and solution element (SE) associated with point Q(i,j,n). The face
of octagon A1, B1, A2, B2, A3, B3, A4, B4, whose centroid is denoted
as Q(i,j,n). Furthermore, point Q is assigned as solution point. Sim-
ilarly, A1, A2, A3, A4 is refer to another’s centroid of octagon,
respectively. Fig. 2(c) illustrates the structure of the CE associated
with point Q(i,j,n). In practice, every CE is formed by four basic con-
servation elements (BCEs) each with the shape of a quadrilateral
cylinder (see Table 1). Finally, Fig. 2(d) presents a schematic
illustration of the SE. As shown, the SE comprises five faces (see
Table 2).

For any (n,g,b) 2 SE(i,j,n), assuming a linear distribution in the
SE, the values of U�m, F�m, G�m and ~h�m at any position in the SE can
be approximated by Um, Fm, Gm and ~hm at point (i,j,n), respectively.
The first-order Taylor’s expansions of Um, Fm and Gm are given,
respectively, by

U�mj
n;g;b
i;j;n ¼ðUmÞni;jþðn�nnÞðUmnÞni;jþðg�gjÞðUmgÞni;jþðb�bjÞðUmbÞni;j;

F�mj
n;g;b
i;j;n ¼ðFmÞni;jþðn�nnÞðFmnÞni;jþðg�gjÞðFmgÞni;jþðb�bjÞðFmbÞni;j;

G�mj
n;g;b
i;j;n ¼ðGmÞni;jþðn�nnÞðGmnÞni;jþðg�gjÞðGmgÞni;jþðb�bjÞðGmbÞni;j;

m¼1;2;3:

ð20Þ

Meanwhile, h
*

m � ðFm;Gm;UmÞ, for any m = 1, 2, 3, can be approxi-
mated by

h
*
�
mj

n;g;b
i;j;n ¼ ðU

�
mðn;g;b; i; j;nÞ; F�mðn;g; b; i; j;nÞ;G�mðn;g;b; i; j;nÞÞ: ð21Þ

In Eq. (20), U�mj
n;g;b
i;j;n describes the extension of U�m from node (i, j,n) to

(n,g,b). Similarly, F�mj
n;g;b
i;j;n , G�mj

n;g;b
i;j;n , and h

*
�
mj

n;g;b
i;j;n describe the extensions

of F�m, G�m and~h�m, respectively, from node (i, j,n) to (n,g,b). Note that



Fig. 7. Effect of Rk on h and Qy at b = 0.5 as wave propagates through two-layer structure with B = 0.0.
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in every case, the subscript (i, j) is the node index of A1, A2, A3 or A4
in Fig. 2(a). The partial derivatives of F and G can be related to that
of U by applying the chain rule with the value of Ub provided by Eq.
(18). The surface flux can be easily calculated by evaluating the flux
vectors at the geometrical center of the surface using the Taylor’s
series expansions.

At some time level n, the solution procedure yields the variables
U, Ux and Uy at the four nodes A1, A2, A3 and A4 in Fig. 2(b), and the
aim is to compute U,Ux and Uy at O0 at the next time level (n + 1/2).
To do so, Eq. (19) is applied to each of the four BCEs, and enforce
the conservation of the total flux of h

*
�
m leaving the conservation

element of Q0 through its surface and the quantities generated by
volume integration of source term Fm. Detail procedures to treat
the source term with the CESE scheme can be found in [18]. Hence,
the unknown value of Um at O0 can be found. Having derived Um,
the unknowns Umx and Umy can be computed based on the weight-
ing skills, as described in [17].

4. Results and discussion

Numerical simulations were performed to investigate the 2D
lagging thermal conduction behavior induced in a single-layer
structure by a short laser pulse with both temporal and spatial
dimensions. The temperature distributions obtained using the
hyperbolic, wavelike, diffusive and over-diffusive non-Fourier ther-
mal propagation models are presented in Figs. 3–6, respectively.
The numerical results obtained for the temperature and heat flux
distributions as the thermal disturbance propagates through the
interface of the two-layer structure are presented in Figs. 7–10.
Note that in all cases, the simulations involve a total of 20,000 cells.



Fig. 8. Effect of Rk on h and Qy at b = 0.5 as wave propagates through two-layer structure with B = 0.1.
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Figs. 3–6 show the evolution of the temperature distribution in
a single-layer structure of length nL = 2 and thickness nW = 1 irradi-
ated by a laser pulse with a characteristic time of bp = 0.1 and a
characteristic length of np = 0.1. Note that the time increment is
5 � 10�4. In general, the lag time ratio, B, controls the transition be-
tween the various thermal conductions modes, i.e., hyperbolic,
wavelike, diffusive, and over-diffusive. Fig. 3 illustrates the evolu-
tion of the temperature distribution for the case of B = 0, i.e., sT = 0.
As shown, under these conditions, the pulsed thermal disturbance
propagates in the form of a hyperbolic wave. It can be seen that the
wave propagates throughout the slab (i.e., b = 0.5 and b = 1.0),
strikes the rear and side surfaces of the slab and is reflected
(b = 1.5), and then forms a superimposed structure comprising
the waves reflected from the various slab surfaces (b = 1.5 and
b = 2.0). These results also show good agreements with those in
reference [14].

Fig. 4 considers the case where B is increased to a value of 0.1. In
this case, the pulsed thermal disturbance is dissipated by the diffu-
sive effect of sT. In general, for all values of the lag time ratio in the
range 05B < 0.5, i.e., sT < sq, wave features such as propagation and
reflection can be observed. However, a hyperbolic wave behavior
occurs only when B is equal to zero. Strictly speaking, the temper-
ature response in the range 0 < B < 0.5 exhibits a wavelike behav-
ior. Observing Figs. 3 and 4, it can be seen that the hyperbolic
wave behavior and the wavelike behavior both result in the
formation of local temperature peaks within the slab due to the
superimposition of the thermal waves reflected from the various
surfaces of the slab.



Fig. 9. Effect of Ra on h and Qy at b = 0.5 as wave propagates through two-layer structure with B = 0.0.
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When the lag time ratio is further increased to B = 0.5, Fig. 5
shows that all of the wave and wavelike features disappear and
are replaced by a diffusive type transport mechanism. Under these
conditions, the peak temperature occurs in the region of the slab at
which the laser pulse is applied. Fig. 6 shows the case where the lag
time ratio is increased to B = 1.0. In this case, sT > sq and it can be
seen that an over-diffusive behavior is induced. Comparing Figs.
5 and 6, it is observed that a larger value of sT enhances the ther-
mal diffusion effect and therefore prompts a more rapid tempera-
ture response in the period immediately following the application
of the thermal pulse. However, a longer period of time is required
for the thermal distribution to reach equilibrium conditions than
that required in the classical diffusion case.

Figs. 7–10 illustrate the hyperbolic and wavelike propagation of
the pulsed thermal disturbance through a two-layer structure. Due
to the nature of the CESE scheme, no solution point exists on the
interface boundary, and thus the problem of uncertainties at the
interface between the two dissimilar materials in the two-layer
structure is avoided. The flux conservation concept inherent in
the CESE method enables clear insights to be obtained into the
behavior of the thermal wave as it propagates through the inter-
face separating the two dissimilar slabs. Fig. 7 illustrates the effect
of parameter Rk on the propagation of the thermal wave at b = 0.5
for conditions of B = 0.0 and RT = Rq = Ra = 1. Since B has a value of
zero, the thermal disturbance exhibits a hyperbolic propagation
mode. A prominent reflection-transmission phenomenon can be
observed at the interface of the two slabs. At the elapsed time con-
sidered in this figure (b = 0.5), the thermal wave front has encoun-
tered the interface and thus the temperature and heat flux
distributions are both dependent on the thermal properties of



Fig. 10. Effect of Rq on h and Qy at b = 0.5 as wave propagates through two-layer structure with B = 0.0.
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the second slab in the two-layer structure. For the case where the
second layer has a higher thermal conductivity (i.e., Rk = 2.0), the
slab has a greater ability to transmit the thermal energy when
the wave front impacts the interface. Therefore, the heat flux in
the second layer increases as the value of Rk increases (Fig. 7(f)),
thus causing a reduction of temperature distribution near the
interface in 1st slab (Fig. 7(e)). However, it can be seen that the
locations of the thermal wave fronts in Fig. 7(e) and (f) remain un-
changed as Rk is increased from 0.5 to 2.0. As a result, it can be in-
ferred that the propagation velocity of the thermal wave is
independent of the thermal conductivity of the two media in the
two-layer structure. Fig. 8 illustrates the results obtained for the
propagation of the thermal wave at time b = 0.5 under conditions
of B = 0.1 and Rk = 0.5 or 2.0. Similar trends are observed to those
presented in Fig. 7. However, in this case, the pulsed thermal dis-
turbance is dissipated by the diffusive effect of sT, resulting in a
wavelike propagation behavior.

Fig. 9 shows the effect of Ra on the temperature and heat flux
distributions in the two-layer structure under conditions of
B = 0.0 and b = 0.5. The thermal wave propagates through the first
and second layers of the structure at velocities of C1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1=sq1

p
and

C2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=sq2

p
, respectively. From the definition above, the ratio of

C2 to C1 can be written as C2 ¼ C1
ffiffiffiffiffiffiffiffiffiffiffiffi
Ra=Rq

p
. Thus, in Fig. 9, it can be

seen that the propagation speed of the transmitted wave in the
second slab increases as the value of Ra increases. By contrast,
Fig. 10 shows that the transmitted wave propagates more rapidly
in the second layer as the value of Rq decreases.

It is well known that in a medium with a low volumetric heat
capacity, qCp, the amount of energy absorbed as a thermal wave
propagates through it is limited and thus a lower temperature rise



Y. Chou, R.-J. Yang / International Journal of Heat and Mass Transfer 52 (2009) 239–249 249
is induced. Hence, a higher value of the thermal diffusivity, a, in-
creases the temperature profile because qCp varies inversely with
a for a constant thermal conductivity. As a result, an increased
value of Ra increases the magnitude of the transmitted wave front
in the second slab of the two-structure layer.

5. Conclusion

This study has performed a series of CESE simulations based on
the DPL thermal model to investigate the propagation characteris-
tics of a laser-induced thermal disturbance within single- and two-
layer structures. By varying the lag time ratio (B = sT1 /2sq1), the
simulations have illustrated the evolutions of the temperature
and heat flux distributions under various 2D lagging heat conduc-
tion mechanisms, namely hyperbolic, wavelike, diffusive and over-
diffusive. Furthermore, the complex reflection-transmission
phenomena which occur as the thermal disturbance encounters
the interface between two dissimilar slabs in a multiple-layer
structure have been presented for both the hyperbolic and the
wavelike propagation modes. The CESE method resolves the com-
plex thermal wave interactions with excellent accuracy.
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